Kicksecure ™ - A Security Hardened Linux Distribution

From Kicksecure
(Redirected from Kicksecure)
Jump to navigation Jump to search

Download Kicksecure ™

Kicksecure ™ is a derivative of Debian. Freedom Software / Open Source.

About Kicksecure ™.

Hardening by Default[edit]

Kicksecure ™ is a hardened operating system designed to be resistant to viruses and malicious code. It is based on hardened Debian in accordance with an advanced multi-layer defense model, thereby providing in-depth security. Kicksecure ™ provides protection from many types of malware in its default configuration with no customization required.

Table: Kicksecure ™ Hardening Features

Feature Description
Linux Kernel Runtime
Guard (LKRG)
LKRG kills entire classes of kernel exploits and will be available in the next version.
Information Leak Protection
tirdad TCP Initial Sequence Numbers Randomization prevents TCP ISN-based CPU Information Leaks; see footnote. [1]
security-misc security-misc enhances miscellaneous security settings related to:
  • kernel hardening settings as recommended by the Kernel Self Protection Project (KSPP)
  • protecting Linux user accounts against brute force attacks
  • enforcing Strong Linux User Account Isolation
  • disabling legacy login methods via Console Lockdown for improved security hardening
  • higher quality randomness (entropy) generation [2]
  • sysctl
  • boot parameters
  • various blacklisted kernel modules
  • network hardening
  • restrictive mount options
  • root access restrictions
  • access rights restrictions
  • application-specific hardening
Secure network time
synchronization using sdwdate
Secure Distributed Web Date (sdwdate) mitigates threats from time based attacks by not relying upon unauthenticated NTP.
Torified apt upgrades This mitigates against targeted, malicious software upgrades.
Default security software
Software like AppArmor and Hardened Malloc are available by default: [3]
  • Hardened Malloc mitigates threats from memory corruption attacks. Hardened Malloc can be used with numerous applications to increase security. [4]
  • Available apparmor profiles for confinement of potentially compromised, high-risk applications.
Open Link Confirmation This is enabled by default and prevents links from being unintentionally opened in supported browsers.

Planned Features[edit]

The Kicksecure ™ development roadmap includes various security improvements:

Usability by Default[edit]

Kicksecure ™ aims to maximize usability by default so it can be utilized as an everyday, multipurpose operating system by users of all skill levels.

Table: Kicksecure ™ Usability Features

Feature Description
Simplicity and flexibility
  • Package shared folder help simplifies shared folder set up for virtual machines. [7]
  • Package usabilty-misc is installed by default, increasing flexibility and providing numerous, miscellaneous usability features. [8]
Popular applications Popular applications come pre-installed and configured with safe defaults to make them ready for use right out of the box. TODO: document.
Data protection Sensitive user data is protected by state-of-the-art cryptographic tools:
  • Local user data is protected by Linux Unified Key Setup (LUKS) which uses strong encryption to safeguard personal information. [9]
  • Communications (email) can be both end-to-end encrypted and signed with OpenPGP.

Design and Development Vision[edit]


Kicksecure ™ lead developer, Patrick Schleizer, has opined that while many valuable security guides exist, better security and privacy for the masses necessitates software that applies a majority of hardening instructions by default.

This is the reason the Free and Open Source Kicksecure ™ and Kicksecure ™ projects exist; to offer systems that provide a reasonable security-hardened baseline, with the in-built flexibility to apply additional hardening dependent upon the user's threat model, hardware capabilities, motivation and knowledge. [10] The table below provides a further rationale for this position.

Table: Security Guide Limitations

Factor Description
Initial vulnerability When a base system is first installed, various security customizations are not yet applied. All users are vulnerable during this period.
Recipient insecurity Security principles do not exist in a vacuum:
  • Even after applying various security hardening steps, correspondence/network partners might have serious, unaddressed vulnerabilities.
  • Some security problems cannot be solved by individuals and may rely on factors in the broader ecosystem. For example:
    • Advanced adversaries perform continual surveillance of all Internet traffic and attempt to attribute collected meta-data to individuals.
    • Following a guide to enhance entropy is insufficient if Tor relays being used are insecure.
    • Often personal security can only be improved if the security of others is also improved.
Reliance on human memory Adequate hardening often depends on discovering and remembering to apply all necessary steps from favorite security guides.
Error risks Manually applying security guide steps can lead to mistakes that render the whole procedure ineffective.
Time requirements Security guide steps are often lengthy and cover many different facets of computing.
Secure guide discovery There are countless security/hardening guides available on the Internet. It is impossible to follow them all and serious research is required to find valuable new resources.
Incompleteness Logically there is not one definitive, all-encompassing security guide. This means some users harden the kernel and install CPU microcode updates, while others rely on sandboxing and implement better random number generators, and so on. Most users miss critical elements because they are simply not aware they exist.
Currency Even the best security guides often contain outdated material. This is especially true for technically detailed or lengthy guides that canvass many topics.
Publication form The form of security guides can effect their utility. For example, those published in blogs and which do not allow comments have grave disadvantages compared to systems relying on collaborative version control software (like git) or collaborative websites (such as a wiki). The reason is contributors can easily fix issues or update contents.
Popularity Security guides which have low popularity cannot effect change and improve security practices if most people are unaware they exist.

For these reasons Kicksecure ™ will remain focused on enabling the majority of (reasonable) hardening settings by default, and allowing additional settings to be easily enforced via installable packages. For further information on this topic, see: The Problem with Security Guides and How We Can Fix It.



Kicksecure ™ Development Goals[edit]

Kicksecure ™ is a security-hardened, non-anonymous Linux Distribution. (Mobile version not planned yet.)

This section details potential future security enhancements for Kicksecure ™.

(The wiki source for the following text can be found here.)

Most iPhone / Android devices [11] "Libre Android" [12] Linux Desktop Distributions Kicksecure ™ Development Goals
Upgrades do not require vendor No Yes Yes Yes
User freedom to replace operating system No Yes Yes Yes
Administrator capabilities (root) not refused No Yes Yes Yes
Custom operating system (bootloader unlock) not refused No Yes Yes Yes
No trouble or void device warranty from software changes (rooting or bootloader unlock) No [13] No [14] Yes Yes
No user freedom restrictions No Yes Yes Yes
No spyware included in operating system No [15] Yes Yes Yes
No culture of freemium applications that spy on users in appstores No Yes Yes Yes
Culture of Freedom Software in appstores No Yes Yes Yes
Freedom Software No [16] Yes Yes Yes
Compromised application cannot access data of other applications Yes [17] Yes [17] No Yes
Malware on a compromised system cannot easily gain root Yes [18] Yes [18] No [19] Yes
Reasonable resistance against system wide rootkit Yes [20] Yes [20] No Yes
Verified Boot Yes Yes No Yes
Hardened Kernel Yes Yes some Yes
Full System MAC Policy Yes Yes No Yes
Internal storage can reasonably easily be removed and mounted elsewhere for the purpose of data recovery or hunting malware / rootkits. No [21] No [14] Yes [22] Yes [23]
Internal storage can reasonably easily be decrypted once transferred to a different device if password is known. No [24] No [25] Yes Yes [26]
Can reasonably easily boot from external hard drive, ignoring internal harddrive for purpose of data recovery or hunting malware / rootkits. No No [14] Yes Yes [23]
Can reasonably easily create full data backup. No [27] Yes Yes Yes [23]

Can reasonably easily create full data backup of any app when device is rooted with Titanium Backup or similar No [28] Yes Yes Yes [23]
Applications cannot refuse data backup (for purpose of malware, spyware analysis or backup and restore). No [29] Yes Yes [30] Yes [23]
No culture of users can ask device (code) for permission and device (code) will decide to grant or refuse the request. No Yes Yes [30] Yes [23]
No culture of applications refusing to run if device is rooted. No [31] Yes Yes Yes [23]
No culture of applications refusing to run if using a custom operating system (custom ROM). No [32] Yes Yes Yes [23]
User (privacy) settings are respected. No [33] Yes Yes Yes [23]
WiFi off indicator means that WiFi is really off. No [34] Yes Yes Yes [23]
Bluetooth off indicator means that Bluetooth is really off. No [35] Yes Yes Yes [23]
Prevention of targeted malicious upgrades. [36] No [37] ? [38] ? [39] Yes [40]
Vendors do not sometimes introduce mitigations that introduce attack surface. No [41] Yes Yes Yes [23]
The GNU Project does not state: "Apple's Operating Systems Are Malware" and "Google's Software is Malware". No Yes Yes Yes [23]

Quote More than a billion hopelessly vulnerable Android gizmos in the wild that no longer receive security updates – research. The operating system of these devices:

  • Do not receive security upgrades from the vendor.
  • Third parties (such as users or the modding community) cannot provide (security) upgrades either due to locked bootloaders, which cannot be unlocked due to vendor decision and due to unavailability of a security bug which could unlock the bootloader.
  • Even if bootloaders can be unlocked there might not be an adequate operating system upgrades available from third parties, such as the modding community. Either due to unpopularity of the devices among modding developers and/or due to technical challenges.

Ability to upgrade (security fixes) devices; replace operating system; bootloader freedom vs bootloader non-freedom:

  • iPhones and some Android devices have locked boot loaders that cannot be unlocked. This restricts user freedom and makes replacing the operating system impossible without a verified boot bypass exploit. In case the vendor deprecated security support for the device, the only choices users realistically have is to keep using an insecure device, or to buy a device which still has security support. Similarly, locked bootloaders also prevent gaining administrator (root) access.
  • Some Android devices do allow unlocking the bootloader but not with custom verified boot keys, causing a decrease in security.
  • Some Android devices (such as the Nexus or Pixel devices) support full verified boot with custom keys that can be used with alternative operating systems.

In conclusion, when using iPhone/Android devices that still receive security updates, the iPhone/Android approach provides strong protection against malware, meaning those platforms are impacted much less than Windows or Linux desktops. [17] Despite the many downsides, the security model of popular mobile operating systems often affords better protection when attempting to prevent any malicious and unapproved party from establishing a foothold in their ecosystem. In the process, the user's and the security community's ability to audit and control what their devices are actually doing is severely diminished. Due to a Conflict of Interest this comes at the expense of transferring power from the user to the developers, user freedom restrictions, Tyrant Security, War on General Purpose Computing.

Kicksecure ™ will not implement these kinds of user freedom restrictions since it is not required nor desirable. The capability to replace the operating system or gain administrator access will remain fully supported. Many popular device operating systems utilize security technologies which restrict user freedoms. In contrast, Kicksecure ™ aims to utilize the same security concepts for the goal of empowering the user and increasing protection from malware.

It is theoretically possible to provide some of the same iPhone / Android security concepts on the Linux Desktop too. Steps have already been made to apply mobile device security concepts to desktop Linux such as security-misc and apparmor-profile-everything. Security technologies like hardened kernels or verified boot used by popular mobile operating systems could also be ported to Linux desktops. Community contributions are gladly welcomed! Here is a list of potential security enhancements for Kicksecure ™:

User Population / Promotion[edit]

  • The security-minded community is larger than the anonymity-minded community. Through Kicksecure ™ we can work on our shared interest in computer security.
  • Apply as many security settings by default without breaking usability too much.
  • Kicksecure ™ is already the base for Whonix - Anonymous Operating System.

Help Wanted[edit]

  • Does anyone want to help create an installer ISO?
  • Kicksecure ™ will hopefully soon become available as a TemplateVM for Qubes OS.


  1. The Linux kernel has a side-channel information leak bug. It is leaked in any outgoing traffic. This can allow side-channel attacks because sensitive information about a system's CPU activity is leaked. It may prove very dangerous for long-running cryptographic operations. Research has demonstrated that it can be used for de-anonymization of location-hidden services.

  2. Better encryption is achieved via preinstalled random number generators, specifically:
    • Loading of the jitterentropy-rng kernel module by default.
    • Installation of the user space entropy gathering daemons haveged and jitterentropy-rng by default.
    • See also: Dev/Entropy.
  3. But are not used for everything.
  4. This is a security-focused general purpose memory allocator providing the malloc API along with various extensions. It provides substantial hardening against heap corruption vulnerabilities.
  5. use DNSCrypt by default
  6. DNS spoofing results in traffic being diverted to the attacker's computer (or any other computer).
  7. It currently only assists with using shared folders in VirtualBox. Other virtualizers -- such as KVM shared folder setup -- might be possible in the future.
  8. Such as creating default folders, allowing commands to be run without a password, simplifying the running of OpenVPN as an unpriveleged user, and much more.
  9. It is recommended to review when Full Disk Encryption can, and cannot, protect personal data.
  10. It is also accepted that no "perfect configuration" exists that can make a system invulnerable against advanced adversaries. Further, systems that are excessively hardened can become almost unusable except for the most advanced individuals.
  11. Most iPhone / Android phones that are sold by mobile carriers or manufacturers have locked bootloaders. These phones are often packaged with spyware installed by default, which cannot be removed. There may be rare exceptions to this rule, hence "most" and not "all". These exceptions are not the point which shall be made in this comparison. See the "Libre Android" column for what is theoretically possible.
  12. There is no "Libre Android" at time of writing. It's only a concept to illustrate a point. There is no "perfect" Android distribution. GrapheneOS has verified boot but root access is refused in default builds. Replicant allows root access, but no references were found that Replicant makes use of verified boot yet. It's not relevant to pick any specific Android distribution for the sake of making the point "iPhone and Android Level Security for Linux Desktop Distributions" no specific Android distribution was chosen for this compassion. A "perfect" Android distribution checking all "green yes" is possible in theory. It doesn't exist due to policy decisions. (GrapheneOS vs root in default builds vs device selection / features.) There are no technical reasons for non-existence. See also this Overview of Mobile Projects, that focus on either/and/or security, privacy, anonymity, source-available, Freedom Software..
  14. 14.0 14.1 14.2 Same issue as Most iPhone / Android devices since inheriting the same hardware limitations.
  15. One example is Carrier IQ.
  16. Comes with a lot proprietary software installed by default.
  17. 17.0 17.1 17.2 That would require an exploit. In comparison, a compromised application on the Linux desktop running under user has full access to all information which that user has access to, including all files, keystrokes and so on. The exception is when mandatory access control (MAC) is in use and successfully confines that application.
  18. 18.0 18.1 Occasionally there are exploits that allow applications to gain root, but as time passes more of these vulnerabilities are being fixed.
  19. On the Linux desktop the process of Preventing malware from Sniffing the Root Password is cumbersome and unpopular. Therefore any compromised application on the Linux desktop could lead to root compromise. This in turn might compromise the bootloader, kernel, or even hardware. It is difficult to detect malware, remove a rootkit and indicators of compromise are rare.
  20. 20.0 20.1 Through verified boot.
  21. This is a hardware limitation. Internal storage is a chip and soldered. Removal is an operation which most repair shops are incapable of performing. Even if removed, it's not easy to find a device which can read the device without booting from it. Perhaps it could be booted from in another device, but that would be beside the point. If the operating system is unbootable due to software issues, it will also be unbootable elsewhere. If malware analysis is the goal, then no code from the suspected infected storage device should ever be executed.
    Even worse if full disk encryption was used as per next table entry.
    Hence, not "reasonably easily" possible.

    Quote How to fully backup non-rooted devices?:

    For 4.0+ devices there is a solution called "adb backup".

    Note: This only works for apps that do not disallow backup! Apps that disallow backup are simply ignored when creating a backup using this way.

    Information from Copy full disk image from Android to computer does not work for non-rooted / non-rootable devices.

    Taking a non-rooted Android device with GrapheneOS, contributed by a user.

    $ adb devices
    List of devices attached
    xxxxxxxxxxx    device
    $ adb root
    adbd cannot run as root in production builds
    $ adb shell
    walleye:/ $ ls
    ls: ./init.zygote64_32.rc: Permission denied
    ls: ./init.rc: Permission denied
    ls: ./init.usb.rc: Permission denied
    ls: ./ueventd.rc: Permission denied
    ls: ./init.zygote32.rc: Permission denied
    ls: ./init: Permission denied
    ls: ./cache: Permission denied
    ls: ./init.environ.rc: Permission denied
    ls: ./persist: Permission denied
    ls: ./postinstall: Permission denied
    ls: ./init.usb.configfs.rc: Permission denied
    ls: ./metadata: Permission denied
    acct apex bin bugreports charger config d data debug_ramdisk default.prop dev dsp etc firmware lost+found mnt odm oem proc product product_services res sbin sdcard storage sys system vendor 
    1|walleye:/ $ sudo ls
    /system/bin/sh: sudo: inaccessible or not found
    127|walleye:/ $ su
    /system/bin/sh: su: inaccessible or not found
    127|walleye:/ $
    walleye:/dev/block $ ls -lah
    total 0
    drwxr-xr-x  6 root   root       2.4K 1970-07-03 11:40 .
    drwxr-xr-x 18 root   root       3.9K 2020-05-26 15:41 ..
    lrwxrwxrwx  1 root   root         37 1970-07-03 11:40 bootdevice -> /dev/block/platform/soc/1da4000.ufshc
    drwxr-xr-x  2 root   root       1.6K 1970-07-03 11:40 by-name
    brw-------  1 root   root   252,   0 1970-07-03 11:40 dm-0
    brw-------  1 root   root   252,   1 1970-07-03 11:40 dm-1
    brw-------  1 root   root     7,   0 1970-07-03 11:40 loop0
    brw-------  1 root   root     7,   8 1970-07-03 11:40 loop1
    brw-------  1 root   root     7,  80 1970-07-03 11:40 loop10
    brw-------  1 root   root     7,  88 1970-07-03 11:40 loop11
    brw-------  1 root   root     7,  96 1970-07-03 11:40 loop12
    brw-------  1 root   root     7, 104 1970-07-03 11:40 loop13
    brw-------  1 root   root     7, 112 1970-07-03 11:40 loop14
    brw-------  1 root   root     7, 120 1970-07-03 11:40 loop15
    brw-------  1 root   root     7,  16 1970-07-03 11:40 loop2
    brw-------  1 root   root     7,  24 1970-07-03 11:40 loop3
    brw-------  1 root   root     7,  32 1970-07-03 11:40 loop4
    brw-------  1 root   root     7,  40 1970-07-03 11:40 loop5
    brw-------  1 root   root     7,  48 1970-07-03 11:40 loop6
    brw-------  1 root   root     7,  56 1970-07-03 11:40 loop7
    brw-------  1 root   root     7,  64 1970-07-03 11:40 loop8
    brw-------  1 root   root     7,  72 1970-07-03 11:40 loop9
    drwxr-xr-x  2 root   root         80 1970-07-03 11:40 mapper
    drwxr-xr-x  3 root   root         60 1970-07-03 11:40 platform
    brw-------  1 root   root     1,   0 1970-07-03 11:40 ram0
    brw-------  1 root   root     1,   1 1970-07-03 11:40 ram1
    brw-------  1 root   root     1,  10 1970-07-03 11:40 ram10
    brw-------  1 root   root     1,  11 1970-07-03 11:40 ram11
    brw-------  1 root   root     1,  12 1970-07-03 11:40 ram12
    brw-------  1 root   root     1,  13 1970-07-03 11:40 ram13
    brw-------  1 root   root     1,  14 1970-07-03 11:40 ram14
    brw-------  1 root   root     1,  15 1970-07-03 11:40 ram15
    brw-------  1 root   root     1,   2 1970-07-03 11:40 ram2
    brw-------  1 root   root     1,   3 1970-07-03 11:40 ram3
    brw-------  1 root   root     1,   4 1970-07-03 11:40 ram4
    brw-------  1 root   root     1,   5 1970-07-03 11:40 ram5
    brw-------  1 root   root     1,   6 1970-07-03 11:40 ram6
    brw-------  1 root   root     1,   7 1970-07-03 11:40 ram7
    brw-------  1 root   root     1,   8 1970-07-03 11:40 ram8
    brw-------  1 root   root     1,   9 1970-07-03 11:40 ram9
    brw-------  1 root   root     8,   0 1970-07-03 11:40 sda
    brw-------  1 root   root     8,   1 1970-07-03 11:40 sda1
    brw-------  1 root   root     8,  10 1970-07-03 11:40 sda10
    brw-------  1 root   root     8,  11 1970-07-03 11:40 sda11
    brw-------  1 root   root     8,  12 1970-07-03 11:40 sda12
    brw-------  1 root   root     8,  13 1970-07-03 11:40 sda13
    brw-------  1 root   root     8,  14 1970-07-03 11:40 sda14
    brw-------  1 root   root     8,  15 1970-07-03 11:40 sda15
    brw-------  1 root   root   259,   0 1970-07-03 11:40 sda16
    brw-------  1 root   root   259,   1 1970-07-03 11:40 sda17
    brw-------  1 root   root   259,   2 1970-07-03 11:40 sda18
    brw-------  1 root   root   259,   3 1970-07-03 11:40 sda19
    brw-------  1 root   root     8,   2 1970-07-03 11:40 sda2
    brw-------  1 root   root   259,   4 1970-07-03 11:40 sda20
    brw-------  1 root   root   259,   5 1970-07-03 11:40 sda21
    brw-------  1 root   root   259,   6 1970-07-03 11:40 sda22
    brw-------  1 root   root   259,   7 1970-07-03 11:40 sda23
    brw-------  1 root   root   259,   8 1970-07-03 11:40 sda24
    brw-------  1 root   root   259,   9 1970-07-03 11:40 sda25
    brw-------  1 root   root   259,  10 1970-07-03 11:40 sda26
    brw-------  1 root   root   259,  11 1970-07-03 11:40 sda27
    brw-------  1 root   root   259,  12 1970-07-03 11:40 sda28
    brw-------  1 root   root   259,  13 1970-07-03 11:40 sda29
    brw-------  1 root   root     8,   3 1970-07-03 11:40 sda3
    brw-------  1 root   root   259,  14 1970-07-03 11:40 sda30
    brw-------  1 root   root   259,  15 1970-07-03 11:40 sda31
    brw-------  1 root   root   259,  16 1970-07-03 11:40 sda32
    brw-------  1 root   root   259,  17 1970-07-03 11:40 sda33
    brw-------  1 root   root   259,  18 1970-07-03 11:40 sda34
    brw-------  1 root   root   259,  19 1970-07-03 11:40 sda35
    brw-------  1 root   root   259,  20 1970-07-03 11:40 sda36
    brw-------  1 root   root   259,  21 1970-07-03 11:40 sda37
    brw-------  1 root   root   259,  22 1970-07-03 11:40 sda38
    brw-------  1 root   root   259,  23 1970-07-03 11:40 sda39
    brw-------  1 root   root     8,   4 1970-07-03 11:40 sda4
    brw-------  1 root   root   259,  24 1970-07-03 11:40 sda40
    brw-------  1 root   root   259,  25 1970-07-03 11:40 sda41
    brw-------  1 root   root   259,  26 1970-07-03 11:40 sda42
    brw-------  1 root   root   259,  27 1970-07-03 11:40 sda43
    brw-------  1 root   root   259,  28 1970-07-03 11:40 sda44
    brw-------  1 root   root   259,  29 1970-07-03 11:40 sda45
    brw-------  1 root   root     8,   5 1970-07-03 11:40 sda5
    brw-------  1 root   root     8,   6 1970-07-03 11:40 sda6
    brw-------  1 root   root     8,   7 1970-07-03 11:40 sda7
    brw-------  1 root   root     8,   8 1970-07-03 11:40 sda8
    brw-------  1 root   root     8,   9 1970-07-03 11:40 sda9
    brw-------  1 root   root     8,  16 1970-07-03 11:40 sdb
    brw-------  1 root   root     8,  17 1970-07-03 11:40 sdb1
    brw-------  1 root   root     8,  32 1970-07-03 11:40 sdc
    brw-------  1 root   root     8,  33 1970-07-03 11:40 sdc1
    brw-------  1 root   root     8,  48 1970-07-03 11:40 sdd
    brw-------  1 root   root     8,  49 2020-05-26 15:41 sdd1
    brw-------  1 root   root     8,  58 1970-07-03 11:40 sdd10
    brw-------  1 root   root     8,  59 1970-07-03 11:40 sdd11
    brw-------  1 root   root     8,  60 1970-07-03 11:40 sdd12
    brw-------  1 root   root     8,  61 1970-07-03 11:40 sdd13
    brw-------  1 root   root     8,  62 1970-07-03 11:40 sdd14
    brw-------  1 root   root     8,  63 2020-05-26 15:42 sdd15
    brw-------  1 root   root   259,  30 2020-05-26 15:41 sdd16
    brw-------  1 root   root   259,  31 2020-05-26 15:41 sdd17
    brw-------  1 root   root   259,  32 1970-07-03 11:40 sdd18
    brw-------  1 root   root     8,  50 1970-07-03 11:40 sdd2
    brw-------  1 root   root     8,  51 1970-07-03 11:40 sdd3
    brw-rw----  1 system system   8,  52 2020-05-26 15:48 sdd4
    brw-------  1 root   root     8,  53 1970-07-03 11:40 sdd5
    brw-------  1 root   root     8,  54 1970-07-03 11:40 sdd6
    brw-------  1 root   root     8,  55 1970-07-03 11:40 sdd7
    brw-------  1 root   root     8,  56 1970-07-03 11:40 sdd8
    brw-------  1 root   root     8,  57 1970-07-03 11:40 sdd9
    brw-------  1 root   root     8,  64 1970-07-03 11:40 sde
    brw-------  1 root   root     8,  65 1970-07-03 11:40 sde1
    brw-------  1 root   root     8,  66 1970-07-03 11:40 sde2
    brw-------  1 root   root     8,  67 1970-07-03 11:40 sde3
    brw-------  1 root   root     8,  68 1970-07-03 11:40 sde4
    brw-------  1 root   root     8,  69 1970-07-03 11:40 sde5
    brw-------  1 root   root     8,  80 1970-07-03 11:40 sdf
    brw-------  1 root   root     8,  81 1970-07-03 11:40 sdf1
    brw-------  1 root   root     8,  82 1970-07-03 11:40 sdf2
    brw-------  1 root   root     8,  83 1970-07-03 11:40 sdf3
    brw-------  1 root   root     8,  84 1970-07-03 11:40 sdf4
    brw-------  1 root   root     8,  85 1970-07-03 11:40 sdf5
    drwx------  2 root   root         40 1970-07-03 11:40 vold
    brw-------  1 root   root   253,   0 2020-05-26 15:41 zram0
    $ adb shell
    walleye:/ $ mount                                                                                                                                                                                                                           
    /dev/root on / type ext4 (ro,seclabel,nodev,relatime)
    tmpfs on /dev type tmpfs (rw,seclabel,nosuid,relatime,size=1851548k,nr_inodes=462887,mode=755)
    devpts on /dev/pts type devpts (rw,seclabel,nosuid,noexec,relatime,mode=600)
    proc on /proc type proc (rw,nosuid,nodev,noexec,relatime,gid=3009,hidepid=2)
    sysfs on /sys type sysfs (rw,seclabel,nosuid,nodev,noexec,relatime)
    selinuxfs on /sys/fs/selinux type selinuxfs (rw,relatime)
    tmpfs on /mnt type tmpfs (rw,seclabel,nosuid,nodev,noexec,relatime,size=1851548k,nr_inodes=462887,mode=755,gid=1000)
    tmpfs on /apex type tmpfs (rw,seclabel,nosuid,nodev,noexec,relatime,size=1851548k,nr_inodes=462887,mode=755)
    /dev/block/sdd3 on /persist type ext4 (rw,seclabel,nosuid,nodev,noatime,data=ordered)
    /dev/block/dm-1 on /vendor type ext4 (ro,seclabel,relatime)
    none on /dev/cpuctl type cgroup (rw,nosuid,nodev,noexec,relatime,cpu)
    none on /acct type cgroup (rw,nosuid,nodev,noexec,relatime,cpuacct)
    none on /dev/cpuset type cgroup (rw,nosuid,nodev,noexec,relatime,cpuset,noprefix,release_agent=/sbin/cpuset_release_agent)
    none on /dev/stune type cgroup (rw,nosuid,nodev,noexec,relatime,schedtune)
    /dev/root on /apex/ type ext4 (ro,seclabel,relatime)
    /dev/root on /apex/ type ext4 (ro,seclabel,relatime)
    /dev/root on /apex/ type ext4 (ro,seclabel,relatime)
    /dev/root on /apex/ type ext4 (ro,seclabel,relatime)
    debugfs on /sys/kernel/debug type debugfs (rw,seclabel,relatime)
    none on /config type configfs (rw,nosuid,nodev,noexec,relatime)
    tracefs on /sys/kernel/debug/tracing type tracefs (rw,seclabel,relatime)
    /dev/block/sde4 on /metadata type ext4 (rw,sync,seclabel,nosuid,nodev,noatime,discard,data=ordered)
    /dev/block/sda28 on /firmware type vfat (ro,context=u:object_r:firmware_file:s0,relatime,uid=1000,gid=1000,fmask=0337,dmask=0227,codepage=437,iocharset=iso8859-1,shortname=lower,errors=remount-ro)
    tmpfs on /storage type tmpfs (rw,seclabel,nosuid,nodev,noexec,relatime,size=1851548k,nr_inodes=462887,mode=755,gid=1000)
    /dev/block/sda45 on /data type ext4 (rw,seclabel,nosuid,nodev,noatime,noauto_da_alloc,resgid=1065,errors=panic,stripe=4096,data=ordered)
    /dev/root on /apex/ type ext4 (ro,seclabel,nodev,relatime)
    /dev/root on /apex/ type ext4 (ro,seclabel,nodev,relatime)
    /dev/root on /apex/ type ext4 (ro,seclabel,nodev,relatime)
    /dev/root on /apex/ type ext4 (ro,seclabel,nodev,relatime)
    /dev/root on /apex/ type ext4 (ro,seclabel,nodev,relatime)
    /dev/root on /apex/ type ext4 (ro,seclabel,nodev,relatime)
    /dev/root on /apex/ type ext4 (ro,seclabel,nodev,relatime)
    /dev/root on /apex/ type ext4 (ro,seclabel,nodev,relatime)
    adb on /dev/usb-ffs/adb type functionfs (rw,relatime)
    mtp on /dev/usb-ffs/mtp type functionfs (rw,relatime)
    ptp on /dev/usb-ffs/ptp type functionfs (rw,relatime)
    /data/media on /mnt/runtime/default/emulated type sdcardfs (rw,nosuid,nodev,noexec,noatime,fsuid=1023,fsgid=1023,gid=1015,multiuser,mask=6,derive_gid,default_normal)
    /data/media on /storage/emulated type sdcardfs (rw,nosuid,nodev,noexec,noatime,fsuid=1023,fsgid=1023,gid=1015,multiuser,mask=6,derive_gid,default_normal)
    /data/media on /mnt/runtime/read/emulated type sdcardfs (rw,nosuid,nodev,noexec,noatime,fsuid=1023,fsgid=1023,gid=9997,multiuser,mask=23,derive_gid,default_normal)
    /data/media on /mnt/runtime/write/emulated type sdcardfs (rw,nosuid,nodev,noexec,noatime,fsuid=1023,fsgid=1023,gid=9997,multiuser,mask=7,derive_gid,default_normal)
    /data/media on /mnt/runtime/full/emulated type sdcardfs (rw,nosuid,nodev,noexec,noatime,fsuid=1023,fsgid=1023,gid=9997,multiuser,mask=7,derive_gid,default_normal)
    pstore on /sys/fs/pstore type pstore (rw,seclabel,relatime)
  22. Computer (non-mobile) hardware is much more flexible. Storage devices can be removed from a computer, then added to another computer as a secondary disk. When booting from an installation assumed to be uncompromised (by [the same] malware), a search for malware can be performed on the other disk without executing any code, reducing risk of infection for the booted disk. This kind of procedure can be performed reasonably easily by most repair shops, and even non-technical people can do this without the need for soldering.
  23. 23.00 23.01 23.02 23.03 23.04 23.05 23.06 23.07 23.08 23.09 23.10 23.11 23.12 Same as Linux Desktop Distributions.
  24. The masterkey is not stored on the internal storage. It is stored in hardware. which is even harder to extract.

    Note: "masterkey" here does not mean "backdoor". This is normal for most Linux desktop distributions offering full disk encryption. The masterkey is stored somewhere. When entering the password at boot with Linux desktop full disk encryption enabled, what gets decrypted is not actually the disk but the masterkey. This is then used to decrypt the disk, which is also called luks header. The advantage of the masterkey is that changing the disk encryption password is possible without having to re-encrypt the whole disk. (cryptsetup-reencrypt).

    It is perhaps possible to dump the masterkey if the phone can still be started and can be rooted. There are no instructions how to do so. Hence, not "reasonably easily".
  25. Same issue as Most iPhone / Android devices. Limitation of hardware, not software.
  26. Same as Linux Desktop Distributions.
  27. See next point below.
  28. Signal is such an example. People expected Titanium Backup to be able to backup the Signal app data but lost data. Extra steps are required for a Signal backup. (Insturctions untested by author of this wiki page.)
  29. Quote android:allowBackup

    Whether to allow the application to participate in the backup and restore infrastructure. If this attribute is set to false, no backup or restore of the application will ever be performed, even by a full-system backup that would otherwise cause all application data to be saved via adb. The default value of this attribute is true.

  30. 30.0 30.1 If credentials can be provided (full disk encryption password if used), (super) root will have full access.
  31. How to prevent applications from discovering my phone as being Rooted
  32. How-To Geek: SafetyNet Explained: Why Android Pay and Other Apps Don’t Work on Rooted Devices
  33. AP Exclusive: Google tracks your movements, like it or not

    Google wants to know where you go so badly that it records your movements even when you explicitly tell it not to.

    An Associated Press investigation found that many Google services on Android devices and iPhones store your location data even if you’ve used a privacy setting that says it will prevent Google from doing so.

    Computer-science researchers at Princeton confirmed these findings at the AP’s request.

  34. How it works, according to Google, is that the Android Location Services periodically checks on your location using GPS, Cell-ID, and Wi-Fi to locate your device. When it does this, your Android phone will send back publicly broadcast Wi-Fi access points' Service set identifier (SSID) and Media Access Control (MAC) data. Again, this isn't just how Google does it; it's how everyone does it. It's Industry practice for location database vendors.

  35. Google can still use Bluetooth to track your Android phone when Bluetooth is turned off
  36. As in singling out specific users. Shipping malicious upgrades to select users only.
  37. Most android phones have a feature which allows to login on google play web/desktop version using the same e-mail address which is used on the phone. Usually the same gmail address. When clicking install for an app using the google play web/desktop version, the user will be prompter (in case of having registred multiple devices) on which device the app should be installed. After pressing install, the app will be installed on the phone. This video demonstrates this. It is therefore established that the google website can result in remote app installation on the phone. It follows that a coerced or compromised google play website could do the same. Since the gmail based web login can be linked to the same gmail address on the phone, pushing targeted malicious upgrades is esspecially easy. Even if a phone was always fully torified (all traffic routed over Tor) the gmail identifier could still be used. While Tor can anonymize the connection, it does not (and should not) attempt to modify anything inside the traffic (the gmail identifier).
  38. Probably same as Linux Desktop Distributions.
  39. Linux distributions usually do not require an e-mail based login to receive upgrades. Users can still be singled out by IP addresses unless users opt-in for using something such as apt-transport-tor which is not the default.
  40. All upgrades are downloaded over Tor. There is no way for the server to ship legit upgrade packages to most users while singling out specific users for targeted attacks.
  41. Some Android vendors introduce mitigations that introduce attack surface.

Unfinished: This wiki is a work in progress. Please do not report broken links until this notice is removed, use Search Engines First and contribute improving this wiki.

Your Advertisement Here | Investors

Search engines: YaCy | Qwant | ecosia | MetaGer | peekier | Kicksecure ™ Wiki

Follow: 1024px-Telegram 2019 Logo.svg.png Twitter.png Facebook.png Rss.png Reddit.jpg 200px-Mastodon Logotype (Simple).svg.png

Support: Discourse logo.png

Donate: Donate Bank Wire Paypal Bitcoin accepted here Monero accepted here Contriute

Kicksecure donate bitcoin.png Monero donate Kicksecure.png United Federation of Planets 1000px.png

Twitter-share-button.png Facebook-share-button.png Telegram-share.png

Have you contributed to Kicksecure ™? If so, feel free to add your name and highlight what you did on the Kicksecure ™ authorship page.

Whonix Version View Edit
Kicksecure Version View Edit

https link onion link Priority Support | Investors | Professional Support

Kicksecure | © ENCRYPTED SUPPORT LP | Heckert gnu.big.png Freedom Software / Osi standard logo 0.png Open Source (Why?)

The personal opinions of moderators or contributors to the Kicksecure ™ project do not represent the project as a whole.